Abstract

Proton-conducting membranes were fabricated from a new short-side chain ionomer Inion (Russian analogue of Aquivion) by solution casting method. A series of temperature treatment experiments was conducted to show that annealing of Inion membranes at the temperature range from 160 °C to 170 °C leads to a significant increase of specific proton conductivity to values even higher than those of commercial membrane Nafion NR212. An explanation of this fact can be given by considering the membranes’ proton transport mechanism and water behavior models in nanopores. Matching the proton conductivity mechanism of the membranes, which is realized in nanostructured channels with the diameter of about several nanometers according to the Grotthuss proton hopping mechanism, and the model of water and ice states in nanopores leads to the comprehensive understanding for the further optimization of the membranes to achieve high transport characteristic. For example, it can be improved by increasing the number of side-chain branches of the polymer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.