Abstract

Al–Ti multilayered films (12 at.% Ti) with bilayer period of 16 nm were deposited by magnetron sputtering. The films were annealed in vacuum at 350 or 400 °C between 2 and 24 h. During annealing, a diffusion-controlled chemical reaction between Al and Ti layers led to Al3Ti precipitation. Differential thermal analysis studies showed an exothermic reaction associated with Al3Ti formation, taking place between 320 and 390 °C, depending on the heating rate. The evolution of microstructure with annealing was examined with transmission electron microscopy and x-ray diffraction. The hardness and residual stress of the films in the as-deposited and annealed conditions were studied in relation to the microstructural changes on annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.