Abstract

Thin film CoPt/Co bilayers have been prepared as a model system to investigate the relationship between microstructure and exchange coupling in two-phase nanocomposite permanent magnets. The bilayers were prepared by magnetron sputter deposition of near-equiatomic CoPt with a thickness of 25 nm onto oxidized Si wafers. In the as-deposited state, CoPt had the A1 (fcc) structure and was magnetically soft. Before reinsertion into the sputtering chamber for the deposition of 2.8–16.7 nm thick Co layers, the CoPt films were annealed at 700 °C for 120 min to produce the magnetically hard, fully ordered L10 phase. The presence of exchange coupling in the bilayers was verified by magnetic hysteresis and recoil measurements and showed that only for Co thicknesses below 6.3 nm was this layer (in its as-deposited state) coupled through its full thickness to the CoPt layer. Annealing the bilayer samples at 300 and 550 °C for 20 min resulted in improvement of the interlayer magnetic coupling and produced clear differences in the magnetic reversal coherency and the recoil curves. However, for some samples, the improved coupling resulted in a decrease in coercivity, indicating that there is an optimum in the coupling strength for the attainment of high coercivity. Transmission electron microscopy studies of the bilayers in plan view showed that the increased interlayer coupling with annealing was a result of improved granular epitaxy of Co to CoPt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.