Abstract

Organic photovoltaic (OPV) cells with improved efficiency using thermal annealing-induced nanostructured copper phthalocyanine as a donor layer were fabricated. A power conversion efficiency of 1.47% in the OPV cell with interdigitated CuPc/C 60 bulk heterojunction has been obtained under AM 1.5 solar illumination at an intensity of 100 mW/cm 2 , which is higher than 0.63% of CuPc/C60 planar cell. Through varying the annealing temperature of CuPc films, the influence of interface morphology and crystallinity of CuPc films on the performance of OPV cells was systematically studied. Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and spectrophotometry were used to characterize the CuPc films. The results showed that at an optimal annealing temperature, the crystalline nature and vertical orientation of nanostructured CuPc have been modified, which can facilitate the separation of interfacial electron-hole pairs and charge carrier transport to electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.