Abstract

Block copolymers have been recognized as versatile materials to prepare nanoporous polymer films or mem- branes, but their potential has not been completely explored. This study focuses on the formation and characterization of nanoporous polymer films based on poly(styrene)-block-(methylmethacrylate/methacrylic acid); (PS-b-MMA/MAA) were obtained through atom transfer radical polymerization (ATRP), by using two different protocols: annealing and annealing- irradiation; for improving the formation of microporous surface. The composition, crystallinity and structural order of the films were studied by Raman spectroscopy. The film polymer thickness was obtained through very high resolution ellip- sometry (VHRE). Finally, atomic force microcopy (AFM) and scanning electron microscopy (SEM) techniques were used to detect changes in the porous-structure. These results show that the morphological properties of the block copolymer were affected via the modification of two variables, UV-radiation time and annealing. SEM and AFM micrographs showed that the morphology exhibit a porous ordered structure. Contact angle measurement suggests additional interactions between hydrophilic functional groups that influence the film wettability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.