Abstract

We study the effect of crystal field anisotropy in the underscreened S=1 Kondo lattice model. Starting from the two orbital Anderson lattice model and including a local anisotropy term, we show, through Schrieffer–Wolff transformation, that local anisotropy is equivalent to an anisotropic Kondo interaction (J∥≠J⊥). The competition and coexistence between ferromagnetism and Kondo effect in this effective model is studied within a generalized mean-field approximation. Several regimes are obtained, depending on the parameters, exhibiting or not coexistence of magnetic order and Kondo effect. Particularly, we show that a re-entrant Kondo phase at low temperature can be obtained. We are also able to describe phases where the Kondo temperature is smaller than the Curie temperature (TK<TC). We propose that some aspects of uranium and neptunium compounds that present coexistence of Kondo effect and ferromagnetism can be understood within this model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.