Abstract
We study the effect of crystal field anisotropy in the underscreened S=1 Kondo lattice model. Starting from the two orbital Anderson lattice model and including a local anisotropy term, we show, through Schrieffer–Wolff transformation, that local anisotropy is equivalent to an anisotropic Kondo interaction (J∥≠J⊥). The competition and coexistence between ferromagnetism and Kondo effect in this effective model is studied within a generalized mean-field approximation. Several regimes are obtained, depending on the parameters, exhibiting or not coexistence of magnetic order and Kondo effect. Particularly, we show that a re-entrant Kondo phase at low temperature can be obtained. We are also able to describe phases where the Kondo temperature is smaller than the Curie temperature (TK<TC). We propose that some aspects of uranium and neptunium compounds that present coexistence of Kondo effect and ferromagnetism can be understood within this model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.