Abstract

A comparative analysis of two models of anisotropic reactivity in bimolecular diffusion-controlled reaction kinetics is presented. One is the conventional model of reactive patches (MRP), where the surface of a molecule is assumed to be reactive over a certain region (circular patch) with the rest of the surface being inert. Another one is the model of reactive hemispheres (MRH), assuming that a molecule is reactive within a certain distance from a point on its surface. The accuracy of the known and newly derived simple analytical expressions for the reaction rate is tested by comparison with the simulation results obtained by the original Brownian dynamics method. These formulas prove to be quite accurate in the practically important limit of strong anisotropy corresponding to small size of the reactive patches or hemispheres. Numerical calculations confirm earlier predictions that the MRP rates are much smaller than the MRH rates for the same radii of the reactive regions, especially in the case where both reacting molecules are anisotropic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.