Abstract

The effect of anionic surfactants on the interfacial compatibility in mono epoxy terminated polydimethylsiloxane (PDMS-E) macromonomer and gelatin mixed system was studied by Gibbs free energy (ΔGM), which played a crucial role in deciding the grafting density of immiscible polymer in heterogeneous system. Aggregation behavior of gelatin chains at boundary between gelatin phase and solvent phase was investigated using viscosity, surface tension and conductivity measurements. Viscosity analysis showed a regular increase in viscosity with the increasing alkyl chain length from C7 to C16 of the homologous alkyl sulfate surfactants. Changes of surface tension exhibited the regular curves of polyelectrolyte–anionic surfactant for alkyl sulfate surfactant systems. The results demonstrated that aggregate structure of gelatin–sulfate surfactants was dominated by electrostatic and hydrophobic interactions, which resulted in a self-assembly process of the hydrophobic segments and hydrophilic segments among gelatin chains and surfactant molecules. However, the interactions between gelatin and alkyl sulfonate surfactants were mainly governed by hydrophobic interactions, which induced conformation change of gelatin molecules. Well-ordered arrangement of gelatin chains at a fluid interface has observed by high-resolution transmission electron microscopy (HR-TEM). It is a key factor to contribute to the reduction of interfacial free energy, which mainly depends on the hydrophobic interaction between gelatin and alkyl sulfate/sulfonate surfactants. MD simulations conclusions are great agreement with our experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call