Abstract

The organic conductor α-(BEDT-TTF)2I3 exhibits the zero-gap state (ZGS) described by the massless Dirac fermions, and is in contrast to that of the single layer graphite, i.e. graphene since the former is robust against the site potential compared with the latter. However, the ZGS of the organic conductor is not fully clarified due to the complexity of several kinds of transfer energies arising from four kinds of donor molecules in a unit cell. In the present paper, we analyze the details of the ZGS by focusing on the role of the anion potential, which acts differently on respective site of donor molecules. We show that the anion potential with a small magnitude does not destroy the ZGS but has an effect of varying the location of the contact point between the conduction and valence bands as found in the case of pressure. Such a behavior can be understood by the tilted Weyl equation with a perturbation for the potential. Further, the ZGS is discussed by examining the relation between the anion potential and the charge disproportionation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.