Abstract

In the work, mobilities of oxygen and protons are determined for F−-substituted solid solutions based on brownmillerite Ba2In2O5 and their concentration dependences are analyzed. It is found that small additives of the more mobile anion (F− ions) promote an increase in oxygen mobility as a result of additional effects of repulsion of ions of different nature in the anion sublattice. Mobility of oxygen at high fluoride concentrations decreases due to the overlapping of migration paths of diffusion, as both anions, fluoride ions and oxygen ions, move via oxygen vacancies. Concentration dependences of mobility of proton carriers have a similar character, which is related to the effect of the oxygen sublattice. The anion doping method used in the work can be recommended as the general method for improvement of the transport characteristics of oxygen-ionic and protonic conductors with a perovskite-like structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.