Abstract
This study examines the effect of the structural characteristics of anion-conducting monomers within pore-filling anion exchange membranes on the performance and durability of anion exchange membrane water electrolysis. Analysis reveals that acrylamide- and acrylate-based membranes show optimal performance without methyl groups, with acrylamide-based membranes outperforming their acrylate counterparts in current density, particularly at 1.8 V. The AC-AA and AC-MAA monomers demonstrate durability, with AC-MAA showing enhanced alkaline stability, likely due to the presence of a methyl group, resulting in an increase rate of 746.6 μV/h compared to AC-AA’s 1150 μV/h. This study also shows that a commercial membrane exhibits a decrease rate of 3116 μV/h, underscoring the pore-filling membrane’s superior durability. Furthermore, the findings highlight that pore-filling membrane technology enables better durability and performance in electrolysis environments compared to the commercial homogeneous membrane, particularly when alkaline conditions are present. This research provides a foundation for designing high-performance, durable membranes for efficient hydrogen production, particularly under water electrolysis conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.