Abstract

The temperature dependences of the conductivity and thermoelectric power for a series of samples W1–x Nb x S2, W1–x Nb x Se2, WS2–y Se y , W1–x Nb x S2–y Se y are studied at low temperatures. It is found that the cation substitution of W atoms with Nb leads to an increase in the conductivity and a decrease in the thermoelectric power. The anion substitution of S with Se atoms results in a simultaneous increase in the conductivity and thermoelectric power. The highest power factor among the samples studied is inherent to W0.8Nb0.2Se2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call