Abstract
Self-assembly of block copolymers has been identified as a potential candidate for high density fabrication of nanostructures. However, the factors affecting its reliability and reproducibility as a patterning technique on various kinds of surfaces are not well-established. Studies pertaining to block copolymer self-assembly have been confined to ultra-flat substrates without taking into consideration the effect of surface roughness. Here, we show that a slight change in the angstrom-scale roughness arising from the surface of a material creates a profound effect on the self-assembly of polystyrene-polydimethylsiloxane block copolymer. Its self-assembly was found to be dependent on both the root mean square roughness (Rrms) of the surface and the type of solvent annealing system used. It was observed that surface with Rrms< 5.0 Å showed self-assembly. Above this value, the kinetic hindrance posed by the surface roughness on the block copolymer leads to its conforming to the surface without observable phase separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.