Abstract

The effects of angiotensin II on total ammonia (tNH3) production and net secretion were investigated using in vitro microperfused mouse S2 proximal tubule segments incubated in Krebs-Ringer bicarbonate buffer containing 0.5 mM L-glutamine. Basolateral exposure of mouse S2 segments to 10(-11), 10(-10), and 10(-9) M angiotensin II stimulated tNH3 production rates by 23, 52, and 49%, respectively. Addition of 10(-6) M angiotensin II inhibited the tNH3 production rate by 34%. 10(-10) M angiotensin II inhibited net luminal secretion of tNH3 in the presence of enhanced luminal acidification and in the absence of altered luminal tNH3 efflux rates. Measurements of intracellular pH (pHi) and intracellular calcium concentration [( Ca2+]i) suggested that the effects of angiotensin II on tNH3 production were not mediated by changes in pHi but by the stimulatory effect of angiotensin II correlated with increased [Ca2+]i. Inhibition of the calcium-calmodulin-dependent pathway with W-7 blocked the stimulatory effect of 10(-10) M angiotensin II on tNH3 production and luminal acidification. These results indicate that angiotensin II has concentration-dependent effects on tNH3 production; that its action to stimulate tNH3 production may be mediated by rises in [Ca2+]i and the calcium-calmodulin pathway; and that angiotensin II, at concentrations that stimulate tNH3 production, inhibits net luminal ammonia secretion by a mechanism that is not mediated by diminished luminal acidification or by changes in luminal ammonia efflux rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.