Abstract

Two new Sm3+ complexes with pyrazolic β-diketones bearing a CF3 group acting as main ligands and with 2,2'-bipyridine or 1,10-phenanthroline being the ancillary ligand were studied, and their energy level structure was established. Stark splitting observed in the photoluminescence spectra of the complexes points to their non-cubic symmetry, confirmed by the calculated Judd-Ofelt intensity parameters. Internal quantum yields obtained for the compounds by the Judd-Ofelt calculations were of the order of 5.5%, whereas the measured external quantum yields were 0.75% and 1.5% for Sm3+ complexes involving 2,2'-bipyridine and 1,10-phenanthroline ancillary ligands, respectively, with the corresponding sensitization efficiencies calculated as 0.16 and 0.26. It was demonstrated that replacing the 1,10-phenanthroline ancillary ligand with 2,2'-bipyridine provides an increase in the intensity of 650 nm emission of the Sm3+ complexes, with the branching ratio reaching 55%. Intensive emission of the studied complexes at 650 nm offers hope for their use as spectrally pure red emitters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call