Abstract

By incorporating the variation of peak soil friction angle ([Formula: see text]) with mean principal stress (σm), the effect of anchor width (B) on vertical uplift resistance of a strip anchor plate has been examined. The anchor was embedded horizontally in a granular medium. The analysis was performed using lower bound finite element limit analysis and linear programming. An iterative procedure, proposed recently by the authors, was implemented to incorporate the variation of [Formula: see text] with σm. It is noted that for a given embedment ratio, with a decrease in anchor width (B), (i) the uplift factor (Fγ) increases continuously and (ii) the average ultimate uplift pressure (qu) decreases quite significantly. The scale effect becomes more pronounced at greater embedment ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.