Abstract
The effect of the endogenous cannabinoid anandamide on cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and proliferation is largely unknown. This study examined whether anandamide altered Ca(2+) levels and caused Ca(2+)-dependent cell death in Madin-Darby canine kidney (MDCK) cells. [Ca(2+)](i) and cell death were measured using the fluorescent dyes fura-2 and WST-1 respectively. Anandamide at concentrations above 5 muM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was reduced by 78% by removing extracellular Ca(2+). The anandamide-induced Ca(2+) influx was insensitive to L-type Ca(2+) channel blockers and the cannabinoid receptor antagonist AM 251, but was inhibited differently by aristolochic acid, WIN 55,212-2 (a cannabinoid receptor agonist), phorbol ester, GF 109203X and forskolin. After pretreatment with thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor), anandamide-induced Ca(2+) release was inhibited. Inhibition of phospholipase C with U73122 did not change anandamide-induced Ca(2+) release. At concentrations of 100 muM and 200 muM, anandamide killed 50% and 95% cells, respectively. The cytotoxic effect of 100 muM anandamide was completely reversed by pre-chelating cytosolic Ca(2+) with BAPTA. Collectively, in MDCK cells, anandamide induced [Ca(2+)](i) rises by causing Ca(2+) release from endoplasmic reticulum and Ca(2+) influx from extracellular space. Furthermore, anandamide can cause Ca(2+)-dependent cytotoxicity in a concentration-dependent manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Basic & Clinical Pharmacology & Toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.