Abstract

In this work, we investigate the effect of oxide cap layer on the metal-induced lateral crystallization (MILC) of amorphous silicon. The MILC is characterized at temperatures in the range 550 to 428°C using Nomarski optical microscopy and Raman spectroscopy. It is shown that better lateral crystallization is obtained when the oxide cap layer is omitted, with the crystallization length increasing by 33% for a 15 hour anneal at 550°C. A smaller increase of about 10% is seen at lower temperatures between 525°C and 475°C and no increase is seen below 450°C. It is also shown that the detrimental effect of the oxide cap layer can be dramatically reduced by giving samples a fluorine implant prior to the MILC anneal. Raman spectroscopy shows that random grain growth is significantly less for unimplanted samples without an oxide cap and also for fluorine implanted samples both with and without an oxide cap. The crystallization length improvement for samples without an oxide cap layer is explained by the elimination of random grain crystallization at the interface between the amorphous silicon and the oxide cap layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call