Abstract

Stress guided waves in the sonic and ultrasonic regime are acknowledged as a powerful too lto inspect pipes in a non-invasive manner.A key point of the inspection procedure is related to the dispersive behavior of guided waves, that for agiven pipe is defined by the so-called dispersion curves. Such behavior, is generally predicted bymeans ofanalytical formulations. However, when the geometry of the pipe cross-section is not axially symmetric,such as in the presence of an open internal crack running along the pipe length, analytical formulations fail. Here, the computation of the guided waves properties for such a scenario is addressed via a SemiAnalytical Finite Element (SAFE) formulation in which the open crack is modeled at the mesh level.Different crack depths are considered and their effect on the waves dispersion curves are highlighted.The results could be of interest in pipeline inspection and monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.