Abstract
The introduction of intermolecular disulfide bonds by amino acid mutations is an effective method for stabilizing dimeric proteins. X-ray crystal structure of Fab of a therapeutic antibody, adalimumab, revealed the first loop of the CH1 domain to be partially unsolved at position 135-141. To find new sites for the introduction of intermolecular disulfide bonds in adalimumab Fab, Fab mutants targeting the unsolved region were predicted using molecular simulation software. Four Fab mutants, H:K137C-L:I117C, H:K137C-L:F209C, H:S138C-L:F116C and H:S140C-L:S114C, were expressed in the methylotrophic yeast Pichia pastoris. SDS-PAGE analysis of these mutants indicated that H:K137C-L:F209C, H:S138C-L:F116C and H:S140C-L:S114C mutants mostly formed intermolecular disulfide bonds, whereas some H:K137C-L:I117C mutants formed intermolecular disulfide bonds and some did not. Differential scanning calorimetry measurements showed increased thermal stability in all Fab mutants with engineered disulfide bonds. The bio-layer interferometry measurements, for binding of the antigen tumor necrotic factor α, indicated that Fab mutants had less antigen-binding activity than wild-type Fab. In particular, the KD value of H:K137C-L:F209C was ~17 times higher than that of wild-type Fab. Thus, we successfully introduced intermolecular disulfide bonds between the first loop region of the CH1 and CL domains and observed that it increases the thermostability of Fab and affects the antigen-binding activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.