Abstract

The influence of an inhibitor (CF3Br or Halon 1301) on the propagation of high-speed turbulent flames, quasi-detonations and the transition to detonation has been investigated for methane-air, propane-air and acetylene-air mixtures. The experiments are carried out in a 13 m tube (15 cm diameter) filled with regularly spaced orifice plates (blockage ratio of 0.39) to ensure rapid flame acceleration. In all cases, the addition of the inhibitor reduces the turbulent flame velocity and extinguishes the flame with sufficient inhibitor concentration (2.7% and 7.5% for methane-air and propane-air, respectively). For acetylene-air mixtures, the quasi-detonation speed is progressively reduced with increasing inhibitor concentration and eventually causes the failure of the quasi-detonation and transition back to a fast turbulent flame. The inhibitor also narrows the propagation limits in all cases. To elucidate the inhibition mechanism, detailed modelling of both the turbulent flame structure as well as the chemical kinetics are required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.