Abstract
Tunnel water inrush disaster is a serious problem in karst tunnel construction and occurs extensively in southwestern China. To prevent water inrush, hydraulic lining has been utilized extensively in karst tunnel construction. The failure of the hydraulic lining in the Tongxi tunnel is an example of a typical failure case that has yet to be fully analyzed. In this paper, the failure of the waterproof liner was studied by theoretical and numerical methods. By field investigation, the failure of the tunnel lining was attributed to a high hydraulic pressure head converging in the large karst caves behind the lining. The corresponding mechanical model can be simplified as a “karst cave water pressure” model. The key to the mechanical model was to determine the water pressure of the karst caves produced by the lining. The variation in water pressure was directly related to the cave’ reservoir volume, catchment flow and catchment time. Thus, volume calculation formulas for two types of karst caves (strike and oblique caves) in the studied tunnel were constructed based on the engineering geological conditions. Considering the precipitation, the flow rate in the karst caves was regarded as nearly constant during the catchment period. Hence, reservoir volumes during different periods can be calculated and converted to the stress boundary conditions of the lining. Then, the mechanical response of the tunnel under different water levels was calculated by numerical simulation. Combining the field investigation and monitoring data, the tunnel lining failure was mainly believed to be triggered by hydraulic fracturing failure due to a high-pressure head. Finally, prevention measures were proposed based on the results of this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.