Abstract

High densities of marine larvae are often associated with microbial problems, mostly caused by opportunistic pathogens, resulting in poor growth and mass mortalities. The early life stages of fish have a very limited immune defence system. Therefore stimulation of non-specific immune mechanisms in fish larvae might be a very interesting tool. The present study evaluates the effects of a known immunostimulant on protein turnover in larval turbot (Scophthalmus maximus). Protein turnover and food intake was determined at day 13 using a time course after feeding the larvae with 15N-labelled rotifers. Turbot larvae fed with rotifers enriched with the immunostimulant FMI at first feeding had significantly higher fractional rates of protein synthesis when compared to a control group. This resulted in three-fold higher protein turnover in the larvae given the immunostimulant compared to the control group. Food intake, larval size and survival at the end of the experiment were similar in the two treatments. The effect of FMI in increasing protein turnover probably imply a higher larval viability and survival in case of environmental/disease stress. However, protein turnover is costly, and this may cause a trade-off between fast growth and stress-resistance/survival in fish larvae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call