Abstract

The inhibition of aflatoxin B1 (AFB1) metabolism by a water extract of the root of Scutellaria baicalensis and its flavonoids was examined in liver microsomes. AFB1 is known to be metabolized to aflatoxin M1 (AFM1), aflatoxin Q1 (AFQ1), and AFB1-8,9-epoxide (AFBO). The water extract potently inhibited the production of AFM1 by cytochrome P450 (CYP)1A1/2 and slightly reduced AFBO formation by CYP1A1/2, CYP2B1, CYP2C11 and CYP3A1/2 in TCDD-treated rat liver microsomes. IC50 values for AFM1 and AFBO formation were 6.8 and 122.4 microg/ml, respectively. Wogonin showed the highest inhibitory activity towards AFM1 formation among the flavonoids isolated from the extract. On the other hand, the extract had no effects on the formation of AFBO and AFQ1 in human liver microsomes, and on the activities of CYP2B1, CYP2C11 and CYP3A1/2 which were detected by hydroxylation patterns of testosterone. These results demonstrated that the extract of the root of Scutellaria baicalensis has a specific inhibitory effect on CYP1A1/2 among CYP enzymes involved in AFB1 metabolism by rat and human microsomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call