Abstract

Molecular dynamics simulations of liquid water were performed at 258 K and density of 1.0 g/cm3 under different strengths of an external electric field, ranging from 0 to 8.0×109 V/m, to investigate the influence of an external field on structural and dynamic properties of water. The flexible simple point charge model is used for water molecules. An enhancement of the water hydrogen bond structure with increasing strength of the electric field has been deduced from the radial distribution functions and the analysis of hydrogen bond structure. With increasing field strength, water system has a more perfect structure, which is similar to ice structure. However, the electrofreezing phenomenon of liquid water has not been detected because of a too large self-diffusion coefficient. The self-diffusion coefficient decreases remarkably with increasing strength of electric field, and the self-diffusion coefficient is anisotropic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.