Abstract

Equilibrium and kinetic effects on the folding of T4 lysozyme were investigated by fluorescence emission spectroscopy in cryosolvent. To study the role of disulfide cross-links in stability and folding, a comparison was made with a mutant containing an engineered disulfide bond between Cys-3 (Ile-3 in the wild type) and Cys-97, which links the C-terminal domain to the N terminus of the protein [Perry & Wetzel (1984) Science 226, 555]. In our experimental system, stability toward thermal and denaturant unfolding was increased slightly as a result of the cross-link. The corresponding reduced protein was significantly less stable than the wild type. Unfolding and refolding kinetics were carried out in 35% methanol, pH 6.8 at -15 degrees C, with guanidine hydrochloride as the denaturant. Unfolding/refolding of the wild-type and reduced enzyme showed biphasic kinetics both within and outside the denaturant-induced transition region and were consistent with the presence of a populated intermediate in folding. Double-jump refolding experiments eliminated proline isomerization as a possible cause for the biphasicity. The disulfide mutant protein, however, showed monophasic kinetics in all guanidine concentrations studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.