Abstract

The effect of an n-type AlGaN layer on the physical properties of dual-wavelength light-emitting diode (LED) is investigated numerically. The simulation results show that compared with the conventional p-type AlGaN electron-blocking layer (EBL), the n-type AlGaN layer can improve the distribution of electrons and holes more uniformly and realize the radiation balance between electrons and holes in the quantum wells, and further reduce the efficiency dro of dual-blue wavelength LED at high current. In addition, the spontaneous emission rate of two kinds of quantum wells can be adjusted through the control of Al composition. It can be found from the results that the emission spectrum of dual-blue wavelength LED is more stable at low current with an Al composition of 0.16, while the emission spectrum is more stable at high current with an Al composition of 0.12.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.