Abstract

Aggregates of α-synuclein are thought to be the disease-causing agent in Parkinson's disease. Various case studies have hinted at a correlation between COVID-19 and the onset of Parkinson's disease. For this reason, we use molecular dynamics simulations to study whether amyloidogenic regions in SARS-COV-2 proteins can initiate and modulate aggregation of α-synuclein. As an example, we choose the nine-residue fragment SFYVYSRVK (SK9), located on the C-terminal of the envelope protein of SARS-COV-2. We probe how the presence of SK9 affects the conformational ensemble of α-synuclein monomers and the stability of two resolved fibril polymorphs. We find that the viral protein fragment SK9 may alter α-synuclein amyloid formation by shifting the ensemble toward aggregation-prone and preferentially rod-like fibril seeding conformations. However, SK9 has only a small effect on the stability of pre-existing or newly formed fibrils. A potential mechanism and key residues for potential virus-induced amyloid formation are described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call