Abstract

We present the phase separation dynamics of a binary (AB), simple fluid (SF), and amphiphilic polymer (AP) mixture using dissipative particle dynamics simulation at d = 3. We study the effect of different AP topologies, including block copolymers, ring block copolymers (RCP), and miktoarm star polymers, on the evolution morphologies, dynamic scaling functions, and length scale of the AB mixture. Our results demonstrate that the presence of APs leads to significantly different evolution morphologies in SF. However, the deviation from dynamical scaling is prominent, mainly for RCP. Typically, the characteristic length scale for SF follows the power law R(t) ∼ tϕ, where ϕ is the growth exponent. In the presence of high AP, we observe diffusive growth (ϕ → 1/3) at early times, followed by saturation in length scale (ϕ → 0) at late times. The extent of saturation varies with constraints imposed on the APs, such as topology, composition ratio, chain length, and stiffness. At lower composition ratios, the system exhibits inertial hydrodynamic growth (ϕ → 2/3) at asymptotic times without clearly exhibiting the viscous hydrodynamic regime (ϕ → 1) at earlier times in our simulations. Our results firmly establish the existence of hydrodynamic growth regimes in low surfactant-influenced phase separation kinetics of binary fluids and settle the related ambiguity in d = 3 systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.