Abstract
Background: The polymer electrolyte membrane serves as a separator and electrolyte in an energy storage device. The structural properties of the host polymer electrolyte have a significant impact on the conductivity value. Objective: The purpose of this study is to investigate the effect of amorphousness and intermolecular interaction degrees between LiClO4 and PLA on the conductivity performance of prepared PLA- based polymer electrolyte film. Methods: The polymer electrolyte film of LiClO4-complexed PLA was prepared with various weight percentages of LiClO4 salt (10%, 20%, 30%, 40%, 50%, and 60%) in PLA by using a solution casting technique. Results: PLA with 50% LiClO4 had the highest degree of amorphousness and the highest percentage of interacting carbonyl groups, which resulted in the highest conductivity of 2.56 x 10-5 S cm-1. Conclusion: Finally, the optimum composition of LiClO4 for the amorphousness, interaction of carbonyl group and conductivity are obtained, which can be used for further research to improve the conductivity value to apply it into energy storage devices’ development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Recent Innovations in Chemical Engineering (Formerly Recent Patents on Chemical Engineering)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.