Abstract
The surfaces of polyacrylonitrile-based carbon fibers were treated by an electrochemical anodic method. Three different kinds of ammonium-salt solutions namely NH4HCO3, (NH4)2CO3 and (NH4)3PO4 were respectively chosen as the electrolytes. The effect of these electrolytes on the surface structure was studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The results showed that longitudinal grooves on the fiber surface became more well-defined and much deeper after surface treatment, and the root mean square roughness (RMS) of carbon fiber surface increased from 4.6nm for untreated fibers to 13.5nm for treated fibers in (NH4)3PO4 electrolytes. The concentration of oxygen and nitrogen atomic on the fiber surface increased after surface treatment. The tensile strength of oxidized fibers had an obvious decrease, whereas the interlaminar shear strength (ILSS) value of corresponding carbon fiber reinforced polymers (CFRPs) increased in a large extent. The intensity of oxidative reaction varied with the change of ammonium-salt solutions and electrochemical oxidation in (NH4)3PO4 electrolyte was of the most violence. The corresponding mechanism was also discussed and the result showed that the higher the concentration of OH− ions in the electrolytes, the violent the oxidative reaction happened.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.