Abstract

Ammonium hexafluorosilicate (AHF) has been applied to arrest caries without discoloration. The purpose of this study was to observe structural and elemental changes of demineralized and AHF applied primary tooth enamel. Enamel from the labial surface of 20 primary canines was divided into an unground side and ground side at the center of the tooth, and demineralized with 35% phosphoric acid for 6 min. The teeth were divided into 4 groups according to a 3-min application of AHF and 1 week of soaking in artificial saliva, as follows: group A (neither AHF nor saliva), group B (only saliva), group C (only AHF), and group D (AHF and saliva), and then subdivided according to whether the enamel was ground or unground. Specimens were analyzed with scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The data were statistically analyzed using ANOVA and Fisher's PLSD test at α = 0.05. In groups A and B, prism structures were seen, however, in groups C and D, enamel surfaces were covered with spherical particles. Ca/P ratio was significantly higher in groups C and D than in groups A and B. There was no significant difference between ground and unground enamel in the content of any element. The values for F, Na, Mg and Si persents and Ca/P ratio were significantly higher for the enamel surface than for points 10-30 µm beneath the surface. Results of this study suggest the possibility that AHF treatment arrests caries, although further study will be required to confirm this result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.