Abstract
ABSTRACTThis study focuses on understanding the influence of incorporating Ammonium Acetate into the chemical bath used for the deposition of CdS thin films, on its optical, morphology, and microstructural properties. Thus, CdS thin films were deposited on 1” × 2” microscopic glass substrates using chemical bath deposition (CBD) technique. The deposition process was carried out in a double jacket beaker with fixed chemical bath temperature of 90°C for a deposition time of 40 min. The chemical bath solution consisted of fixed concentrations of Cadmium Acetate, Thiourea, and Ammonium Hydroxide; with corresponding values of 4.8×10-4M; 0.97×10-4M; and 0.2M, respectively. However, Ammonium Acetate was incorporated into the deposition bath with concentrations that were varied from 3.0 mM to 12.2 mM. Meanwhile, for comparison purposes associated to the initial physical and chemical properties of the CdS films; reference CdS films were deposited under the same above chemical bath conditions, but in the absence of Ammonium Acetate. The pH of the chemical bath was measured during the deposition process. The films’ morphology and the chemical composition were examined by Field Emission Scanning Electron Microscopy (FE-SEM), and the Energy Dispersive spectrometer (EDS), respectively. The X-Ray Diffraction (XRD) θ/2θ technique was applied to study the structure of the films, including the lattice parameters. Atomic Force Microscopy (AFM) was used to examine the films topography and to determine the root-mean-square (RMS) surface roughness of the films as well as the grain size. Dektak Surface Profilometer was used to determine the CdS films’ thickness, where the films’ optical properties were measured using UV-Vis-NIR spectrometer. Optical energy band gap (Eg), and absorption coefficient (α) were calculated from the transmission spectral data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.