Abstract

Chlorine is a widely used disinfectant which prevents the spread of harmful pathogens when reusing wastewater, but harmful byproducts might be formed and cause adverse ecological and health effects. In this study, the potential effects of chlorination on the genotoxicity of different biologically treated wastewater samples were investigated using the umutest. For the firsttime, ammonia nitrogen (NH3-N) was found to significantly influence genotoxicity during wastewater chlorination. After chlorination, the genotoxicity decreased in wastewater with a low NH3-N concentration (<10-20 mg/L), but it increased notably in wastewater with a high NH3-N concentration (>10-20 mg/L). By fractionating the DOM (dissolved organic matter) in wastewater into different fractions, it was found that the hydrophilic substances (HIS) fraction of DOM was the key fraction involved in decreasing genotoxicity during the chlorination of wastewater with a low NH3-N concentration, while the hydrophobic acids (HOA) fraction of DOM was the key fraction involved in increasing genotoxicity during chlorination of wastewater with a high NH3-N concentration. Furthermore, fluorescence spectroscopy analysis on different fractions indicated that some free or combined aromatic amino acids might produce highly genotoxic byproducts during the chlorination of wastewater with a high NH3-N content, and this was then demonstrated through experiments on the chlorination of free aromatic amino acids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call