Abstract

ABSTRACTFree amino acids, peptides, and vital wheat gluten were investigated to determine their effect on the mixing and frozen dough baking properties of wheat flour. Addition of 1% cysteine and aspartic acid decreased and glutamic acid, histidine, arginine, and lysine increased the mixing tolerance of flour. Cystine, methionine, tryptophan, and phenylalanine increased but isoleucine, histidine, glycine, arginine, glutamic acid, aspartic acid, and lysine decreased loaf volume of nonfrozen dough breads. However cystine, methionine, tryptophan, and phenylalanine did not increase loaf volume of bread prepared from frozen dough. Vital wheat gluten increased mixing tolerance and bread loaf volume only for the nonfrozen dough. However, wheat gluten hydrolysate, corn, and bonito peptides decreased mixing tolerance after optimum mixing time and were effective in increasing loaf volume for both frozen and nonfrozen dough. As the amount of corn and bonito peptide increased, specific loaf volumes also increased. Addition of 2.5% corn peptide was most effective in increasing loaf volume of frozen dough bread. Crust browning and crumb stickiness increased, whereas crumb softness decreased with addition of peptides. Addition of less than 1% peptide did not adversely affect the aftertaste and off‐flavor of bread. These results suggest that addition of peptides are effective for improving the baking quality of frozen dough, whereas amino acids and gluten have no effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.