Abstract

Knowledge about chemical functionalization is of fundamental importance to design novel two-dimensional topological insulators. Despite theoretical predictions of quantum spin Hall effect (QSH) insulator via chemical functionalization, it is quite challenging to obtain a high-quality sample, in which the toxicity is also an important factor that cannot be ignored. Herein, using first-principles calculations, we predict an intrinsic QSH effect in amidogen-functionalized Bi/Sb(111) films (SbNH2 and BiNH2), characterized by nontrivial Z2 invariant and helical edge states. The bulk gaps derived from px,y orbitals reaches up to 0.39 and 0.83 eV for SbNH2 and BiNH2 films, respectively. The topological properties are robust against strain engineering, electric field, and rotation angle of amidogen, accompanied with sizable bulk gaps. Besides, the topological phases are preserved with different arrangements of amidogen. The H-terminated SiC(111) is verified as a good candidate substrate for supporting the films without destroying their QSH effect. These results have substantial implications for theoretical and experimental studies of functionalized Bi/Sb films, which also provide a promising platform for realizing practical application in dissipationless transport devices at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.