Abstract

Abstract Two-phase flow pressure drop during condensation of steam inside inclined tube heat exchangers was investigated over a wide range of ambient temperature. The ambient temperature changes from 3 to 45 °C, the steam mass flux varies from 3 to 18 kg/(m2 · s), vapor quality ranges from 0.51 to 0.86. 608 data points were experimentally obtained and compared with eight commonly used correlations from the available literatures. Frictional pressure drop increases with increasing temperature difference and fan speed. For the full experimental dataset, the best overall performing correlation was obtained by using the Wallis correlation (MAPE = 17.60%, NRMSE = 14.87%). For cold ambient temperatures, (Tamb < 20 °C, N = 298), the best overall performing correlation was obtained by using the Carey correlation (MAPE = 11.02%, NRMSE = 14.71%). For hot ambient temperatures (Tamb > 30 °C, N = 196), the Lockhart and Martinelli correlation has shown the best performance (MAPE = 16.84%, NRMSE = 20.45%). An improved two-phase frictional pressure drop correlation based on the Wallis correlation (Wallis, 1969, One Dimensional Two-Phase Flow, McGraw-Hill, New York) is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.