Abstract
ABSTRACTThe copper electroplating stress measurement method uses the grain growth in the copper on a machine element that has been subjected to repeated loads. Because this growth is also caused by thermal energy, the effect of the ambient temperature on grain growth density and grain orientation was investigated. Cyclic torsion tests were carried out at temperatures from 293 to 353 K. The relationship among the grain growth density, maximum shear stress, number of cycles, and ambient temperature was formulated to measure the maximum shear stress occurring on the machine element. Moreover, cyclic bending–torsion tests were also performed, and the orientations of grown grains were analysed by electron backscatter diffraction. The slip directions of grown grains corresponded closely with the direction of shear stress in spite of the ambient temperatures. This means that principal stresses can be measured by using the pole figure or the inverse pole figure of grown grains at temperatures up to 353 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.