Abstract

Active magnetic bearings (AMBs) bring extraordinary benefits such as free of contact, elimination of lubrication, active control of rotor position, and a built-in monitoring system. In the design of AMBs, the bearing structure is of significance since it has an important impact on bearing performances. However, the effect of winding configurations of AMBs is still obscure. In this paper, the system-level implications of two radial AMB winding configurations termed the Ortho and the Cross types are investigated, including the bearing characteristics, power consumptions and rotor dynamic behaviors. The simulation results demonstrate that the Cross type contributes to larger load capacity in the direction of gravity. In condition of a heavier gravity load (−200 N), the Cross-type winding configuration saves power consumption with a percentage of 17.2% at steady state (20,000 rpm) and 12.7% considering unbalance mass during the run-up process. However, the rotor vibrations of the Cross type in case of external loads and unbalance mass are larger than the Ortho type. The proposed results of this paper provide some useful information for the AMB winding configuration design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call