Abstract

The addition of aluminum particles in composite propellants has a positive effect on the performance of solid rocket motor, while it also brings some changes in the ignition behaviors. To clarify the ignition process and performance of aluminized propellants, a visualization experimental system was built. It is found that the ignition process of aluminized propellants mainly includes heating and melting of the solid phase, evaporation, mixing and ignition of decomposed gas. Besides, few aluminum particles agglomerate together and they are not ignited during the ignition process of propellants. According to the process of ignition, the ignition delay time can be described as the sum of pyrolysis time, mixing time and chemical reaction time. After the propellants is ignited and the stable flame is formed, the aluminum particles on the burning surface mainly undergo exposure – accumulation – fusion – separation – ignition – combustion. And the structure of the agglomerate transitions from a coral-like to an oxidized cap. At the same time, the ignition of agglomerated products occurs in the stable flame. With the increase of aluminum content and initial aluminum particle size, the ignition delay time also increases, but the proportion of these three times in the ignition delay is not very much related to the formulation of propellants. With the increase of power density of ignition, the ignition delay time decreased markedly, but the decreasing trends continuously became more gradual and eventually flattened out. As the power density of ignition increases, the percentage of pyrolysis time in the ignition delay time decreases rapidly and gradually stabilizes, while the percentage of mixing time gradually increases and the chemical reaction time does not change much. A sufficiently large and reasonable ignition energy power can reduce the ignition delay time and also reduce the impact of the differences between formulations on ignition performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.