Abstract

Aluminum was added into Sn-3.0Ag (wt.%) solder to investigate the effect of aluminum concentration on the interfacial reaction of Sn-3.0Ag-xAl solders with copper or electroless nickel immersion gold (ENIG) metallizations. Four different Sn-3.0Ag-xAl solders (x = 0 wt.%, 0.1 wt.%, 0.5 wt.%, and 1.0 wt.%) were used for comparison. It was found that the composition, morphology, and thickness of interfacial reaction products were strongly dependent on aluminum concentration. At low aluminum concentration (0.1 wt.%), the typical Cu6Sn5 layer was formed at the interface. When the aluminum concentration was 0.5 wt.%, a continuous CuAl2 layer spalled off from the interfacial Cu-Sn intermetallic compound (IMC) layer. Only a planar CuAl2 layer was observed at the interface when the aluminum concentration was increased to 1.0 wt.%. In Sn-Ag-Al/ENIG reactions, Ni3Sn4 was formed and spallation occurred near the interface in the Sn-3.0Ag and Sn-3.0Ag-0.1Al solder joints. When the aluminum concentration was higher than 0.1 wt.%, a thin planar AuAl compound formed at the interface. There was no P-rich phase formation that retarded the spalling phenomenon. The aluminum additive in Sn-Ag solder inhibited the growth of IMCs in the reaction with copper or ENIG metallizations, which was favorable for the reliability of solder joints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.