Abstract

The effect of Al closed-cell foam filling on the quasi-static crushing behavior of an E-glass woven fabric polyester composite tube and thin-walled Al/polyester composite hybrid tube was experimentally investigated. For comparison, empty Al, empty composite and empty hybrid tubes were also tested. Empty composite and empty hybrid tubes crushed predominantly in progressive crushing mode, without applying any triggering mechanism. Foam filling was found to be ineffective in increasing the crushing loads of the composite tubes over the sum of the crushing loads of empty composite tube and foam. However, foam filling stabilized the composite progressive crushing mode. In empty hybrid tubes, the deformation mode of the inner Al tube was found to be a more complex form of the diamond mode of deformation of empty Al tube, leading to higher crushing load values than the sum of the crushing load values of empty composite tube and empty metal tube. The foam filling of hybrid tubes however resulted in axial splitting of the outer composite tube due to the resistance imposed by the foam filler to Al tube inward folding and hence it was ineffective in increasing crushing load and SAE values over those of empty hybrid tubes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call