Abstract

The aim of this study was to see whether aluminum (Al) and lead (Pb) salts are toxic for cultured human fibroblasts under different experimental conditions, in the controllable situation offered by cell cultures. Cell survival and membrane lipid peroxidation served as markers of Al and Pb toxicity. Evaluation of the living cells was carried out using a colorimetric method, the mitochondrial reduction of 1-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). Lipoperoxidation assay was performed on whole cell homogenates by measuring thiobarbituric acid-reactive substances (TBARS) produced after incubation with ascorbic acid-ferrous sulfate. Al(III) and Pb(II) salts (300 microM) produce a considerable decrease in cell survival after an exposure period of 4d, evident with the three fetal calf serum concentrations in the culture media: 2, 5, and 10%. Taking into account in vitro cell aging, the cytotoxic effects of Al(III) and Pb(II) are greater in senescent fibroblasts than in young cells. Lead-induced cytotoxicity is higher than Al-induced cytotoxicity. A mechanism that contributes to cellular toxicity is membrane lipid peroxidation; our results demonstrate that Al(III) and Pb(II) ions, 400 microM, exert an antioxidant-like effect or a pro-oxidant action on cell membranes depending on exposure time. We describe significant increases in TBARS formation associated with the presence of 400 microM Al(III) or Pb(II) salts in the culture media. Our study also revealed that these heavy metals induce a cell age-dependent action on membrane lipoperoxidation that is greater in senescent fibroblasts and this could have severe consequences for maintenance of cellular integrity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.