Abstract

Reduction of magnetite doped with alumina (3, 6 and 12 mass pct Al2O3) was studied using CO/CO2 gas mixture (80 vol pct CO) at 1023 K and 1123 K (750 °C and 850 °C). The reduction rate and degree of reduction were evaluated from the weight loss of a sample with time. The reduction behavior was analyzed using the results of XRD and SEM–EDS measurements and thermodynamic analysis. Effect of alumina on the magnetite reduction depended on the alumina content and temperature. Magnetite reduction at 1023 K (750 °C) was accelerated by the addition of 3 mass pct Al2O3, however, the rate of reduction significantly decreased with the further increase in the alumina content to 6 and 12 mass pct. Different effect of alumina was observed in reduction at 1123 K (850 °C); the rate of reduction of the Fe3O4-Al2O3 mixture with 6 mass pct Al2O3 was the fastest. Reduction of un-doped magnetite was developed topochemically with the formation of a dense iron shell. However, reduction of alumina-doped magnetite to wustite started along certain lattice planes with the formation of network-like structure. In the course of reduction, Al3+ ions diffused from wustite to the Fe3O4-FeAl2O4 solution enriching hercynite content in the solution at the reaction interface. Further reduction of alumina-rich Fe3O4-FeAl2O4 solution resulted in the formation of micro-cracks which enhanced the rate of the reduction process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call