Abstract
Incorporation or top-dressing of composted biosolids (CB) can enhance turfgrass establishment and sod properties at harvest, but soil phosphorus (P) and nitrogen must be managed to protect water quality. Alum treatment of CB could reduce soluble P concentrations in amended soil and limit runoff loss of P. The objective was to evaluate CB and Alum effects on turfgrass coverage of soil and runoff losses during ‘Tifway’ bermudagrass [Cynodon dactylon (L.) Pers. var. dactylon × C. transvaalensis Burtt-Davey] establishment from sprigs or transplanted sod. Three replications of eight treatments comprised a complete randomized design. Four treatments were composed of ‘Tifway’ sprigged in soil with and without incorporation of CB and Alum. Four remaining treatments were sods harvested from ‘Tifway’ grown with and without top-dressed CB that were transplanted with and without a surface spray of Alum. Surface coverage of ‘Tifway’ sprigged in soil mixed with inorganic fertilizer or CB was comparable to transplanted sod 25 days after planting. In contrast, Alum incorporation acidulated soil, slowed coverage rates of sprigged ‘Tifway’, and increased NH4-N runoff loss during early establishment in treatments without CB. Incorporation of Alum with CB or inorganic fertilizer in soil before sprigging reduced soil water-extractable P (WEP) more than 38% and reduced runoff loss of soluble reactive P (SRP) in three of four establishment treatments. Although SRP runoff loss from CB-amended sod was greatest among treatments, the Alum spray minimized SRP loss after transplanting. Alum effectively reduced runoff loss of SRP from CB, soil, and turfgrass sources during establishment from sprigs or sod. Additional field research is needed, but incorporated or surface sprays of Alum offer a potential new practice for mitigating runoff loss of SRP from establishing turfgrass.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.