Abstract
BackgroundIndividuals with knee osteoarthritis (OA) show various dynamic sagittal-plane changes during the early stance phase of gait. However, the effect of these kinematic alterations on knee load during the early stance remains poorly understood. Research question: The purpose of this study was to examine the effect of altered sagittal- plane knee kinematics on knee load during the early stance. MethodsA total of 13 healthy adult men underwent gait analysis trials using four conditions (baseline and three altered conditions). The three altered conditions were defined as follows:1) Less flexion (LF): a gait that decreased knee flexion excursion (KFE) owing to a reduced peak knee flexion angle compared to baseline.2) Initial flexion (IF): a gait with decreased KFE owing to an increased knee flexion angle at initial contact, during which the peak knee flexion angle did not differ from baseline.3) Flexion gait (FG): a gait that increased the knee flexion angle at initial contact but did not reduce KFE compared with the baseline.Data analyzed included peak external knee flexion moment (KFM), KFM impulse (impulse was an integral value from initial contact to peak value), peak vertical ground reaction force (VGRF), and maximum loading rate. ResultsBoth LF and IF conditions significantly decreased peak VGRF (p < 0.05) compared with the baseline. Peak KFM decreased in the LF condition and increased in the FG condition versus baseline (p < 0.05). A significantly increased KFM impulse was found in both IF and FG conditions when compared with baseline (p < 0.05). SignificanceAn increase in knee flexion angle during early stance increased knee loading. Interventions are likely required for improving excessive knee flexion during early stance phase of gait in individuals with knee OA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.