Abstract

Activity-dependent transneuronal regulation of neuronal soma size has been studied in the medial nucleus of the trapezoid body and ventral cochlear nucleus of adolescent gerbils. Cochlear ablation or tetrodotoxin has been used to eliminate afferent electrical activity in auditory nerve fibers permanently or for 24 or 48 hours. Previous studies have shown that the cross-sectional area of spherical cell somata in the ipsilateral anteroventral cochlear nucleus decreases within 24 hours of electrical activity blockade with tetrodotoxin, which is fully reversible when activity is restored. The present findings extend this work by directly comparing the results of unilateral blockade of auditory nerve action potentials or unilateral cochlear ablation on the size of spherical and globular cell bodies in the ventral cochlear nucleus with changes produced by the same manipulations in third-order cells, principal neurons in the medial nucleus of the trapezoid body. Soma size in both ventral cochlear nucleus cell types decreases reliably by 24 hours after cochlear removal or eighth nerve activity blockade by tetrodotoxin. Soma size of neurons in the contralateral medial nucleus of the trapezoid body decreases 48 hours, but not 24 hours, after either manipulation. When activity in auditory nerve fibers is allowed to resume for 7 days following a 48-hour activity blockade, soma size fully recovers in the medial nucleus of the trapezoid body as well as in ventral cochlear nucleus neurons. We also report that the cross-sectional area of neuronal soma in the medial nucleus of the trapezoid body is larger in lateral regions of medial nucleus of the trapezoid body (low-frequency representation) than in the medial regions of the nucleus (high-frequency representation). We conclude that cell body size changes in brainstem auditory neurons are reversible and that the signals associated with the loss and subsequent recovery of soma size are activity related. However, the delayed effect of activity deprivation in the medial nucleus of the trapezoid body suggests that trophic substances released by afferent axons may contribute to the maintenance of anatomical characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.