Abstract

Experimental studies have established that alveolar gas exchange is inversely relation to the molecular diffusivity of gas in the lung airways. The mechanism underlying this relationship is, however, unclear. To investigate this phenomenon, the conditions relevant to the experimental studies are simulated using a computational model of pulmonary gas transport. Results from these simulations suggest that the inverse relationship found experimentally can largely be explained on the basis of the intra-acinar stratification of blood flow and gas concentrations. Gas having a relatively low molecular diffusivity is not transported as far into the acinus as gas having a higher diffusivity. When these relative intra-acinar gas distributions interact with the blood flow distribution, which has been shown experimentally to be weighted towards the proximal alveoli, more gas exchange occurs in the low molecular diffusivity mixture. Consideration of the various other mechanisms that have been proposed to explain the experimental findings.he inverse dependence suggests that they are of little significance. In particular, our studies remove the need to invoke Taylor diffusion to explain the experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.