Abstract

It is well known that α-synuclein (αS) plays an important role in the pathogenesis of Parkinson’s disease (PD). Moreover, oxidative stress is also thought to be an important factor in PD due to induction of dopaminergic neuronal cell death by free radicals and enhancement of αS fibrillation by oxidized stress. In the present study, to clarify the role of glutathione (GSH), an intracellular antioxidant, on the molecular mechanism of αS-induced cell injury, we examined the effects of L-buthionine-SR-sulfoximine (BSO), a GSH synthase inhibitor, with or without N-acetyl-L-cysteine (NAC), a source of GSH, on αS-induced cell injury in human neuroblastoma SH-SY5Y cells. Treatment with BSO significantly reduced the cell viability of both empty-vector- and αS-transfected SH-SY5Y cells in a dose-dependent manner (p < 0.01), although the ratio of αS-induced reduction of cell viability in α-syn-transfected cells was much greater than that in empty-vector-transfected cells. Moreover, BSO significantly reduced the intracellular total GSH level in both types of transformant cells. However, NAC significantly prevented BSO-induced reduction of both cell viability and GSH level in the αS-transfected cells. These findings suggest that GSH plays an important role in αS-induced cell injury by reducing cell viability.

Highlights

  • To clarify the role of glutathione (GSH), an intracellular antioxidant, on the molecular mechanism of αS-induced cell injury, we examined the effects of L-buthionine-SR-sulfoximine (BSO), a GSH synthase inhibitor, with or without N-acetyl-L-cysteine (NAC), a source of GSH, on αS-induced cell injury in human neuroblastoma SH-SY5Y cells

  • We examined the effects of L-buthionine-SR-sulfoximine (BSO), a typical GSH synthase inhibitor, with or without N-acetylcysteine (NAC), a source of GSH, on αS-induced cell injury in human neuroblastoma SH-SY5Y cells, to clarify the role of GSH on the molecular mechanism of αS-induced cell injury

  • BSO induced a reduction of cell viability in αS-transfected SH-SY5Y cells; in particular, treatment with BSO (100 μM) for 144 h resulted in markedly reduced cell viability in αS-transfected cells compared with the control cells (Figure 2; p < 0.01)

Read more

Summary

Introduction

This pathology is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta and the presence of cytoplasmic inclusions known as Lewy bodies (LB) [1]. Oxidative stress, including the reactive oxygen or nitrogen species generated in the enzymatic oxidation [4] or auto-oxidation of an excess amount of dopamine (DA) [5], is thought to play an important role in dopaminergic (DAergic) neurotoxicity [6]. We examined the effects of L-buthionine-SR-sulfoximine (BSO), a typical GSH synthase inhibitor, with or without N-acetylcysteine (NAC), a source of GSH, on αS-induced cell injury in human neuroblastoma SH-SY5Y cells, to clarify the role of GSH on the molecular mechanism of αS-induced cell injury

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.